login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274308
Number of n-tuples of singular vectors of a 3 X 3 X 3 X ... X 3 n-dimensional tensor.
3
1, 3, 37, 997, 44121, 2882071, 260415373, 31088448777, 4737782756017, 897380763253291, 206773800208348341, 56951114596754707693, 18476855531112777659017, 6973886287904020598308287, 3029760395576715276955711261, 1501087423496953812426438796561
OFFSET
1,2
LINKS
Shalosh B. Ekhad and Doron Zeilberger, On the Number of Singular Vector Tuples of Hyper-Cubical Tensors, 2016; also arXiv preprint arXiv:1605.00172, 2016.
Bernd Sturmfels, Tensors and Their Eigenvalues, Notices AMS, 63 (No. 6, 2016), 606-606. (Th. 9 gives g.f.)
MAPLE
ans:=[];
for d from 1 to 10 do
for h from 1 to d do zh[h]:=add(z[i], i=1..d)-z[h]; od;
t1:= expand(simplify( mul( (zh[i]^3-z[i]^3) / (zh[i]-z[i]), i=1..d)));
a:=t1; for i from 1 to d do a:=coeff(a, z[i], 2); od;
ans:=[op(ans), a];
od:
ans;
MATHEMATICA
a[n_] := Module[{s, x, xx, xd, f}, s = Total[xx = Array[x, n]]; xd = {#, 0, 2}& /@ xx; f = 1; Do[f = Series[f(s^2 - s x[i] + x[i]^2), Sequence @@ Evaluate[xd]], {i, 1, n}]; SeriesCoefficient[f, Sequence @@ Evaluate[xd]] ];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 26 2018 *)
PROG
(PARI)
P(n, t='t) = {
my(z=vector(n, k, eval(Str("z", k))),
s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2,
f=vector(n, k, s2 + t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1);
for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0)));
for (k=1, n, g=polcoef(g, 2, z[k]));
g;
};
vector(10, n, P(n, 2)) \\ Gheorghe Coserea, Nov 27 2018
CROSSREFS
Row n=3 of A284308.
Sequence in context: A003717 A354020 A201697 * A318224 A300986 A003716
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 21 2016
EXTENSIONS
a(11)-a(15) from Gheorghe Coserea, Jun 29 2016
a(16) from Alois P. Heinz, Mar 24 2017
STATUS
approved