Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Dec 01 2018 04:56:00
%S 1,3,37,997,44121,2882071,260415373,31088448777,4737782756017,
%T 897380763253291,206773800208348341,56951114596754707693,
%U 18476855531112777659017,6973886287904020598308287,3029760395576715276955711261,1501087423496953812426438796561
%N Number of n-tuples of singular vectors of a 3 X 3 X 3 X ... X 3 n-dimensional tensor.
%H Shalosh B. Ekhad and Doron Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/svt.html">On the Number of Singular Vector Tuples of Hyper-Cubical Tensors</a>, 2016; also arXiv preprint arXiv:1605.00172, 2016.
%H Bernd Sturmfels, <a href="http://www.ams.org/publications/journals/notices/201606/rnoti-p604.pdf">Tensors and Their Eigenvalues</a>, Notices AMS, 63 (No. 6, 2016), 606-606. (Th. 9 gives g.f.)
%p ans:=[];
%p for d from 1 to 10 do
%p for h from 1 to d do zh[h]:=add(z[i],i=1..d)-z[h]; od;
%p t1:= expand(simplify( mul( (zh[i]^3-z[i]^3) / (zh[i]-z[i]), i=1..d)));
%p a:=t1; for i from 1 to d do a:=coeff(a,z[i],2); od;
%p ans:=[op(ans),a];
%p od:
%p ans;
%t a[n_] := Module[{s, x, xx, xd, f}, s = Total[xx = Array[x, n]]; xd = {#, 0, 2}& /@ xx; f = 1; Do[f = Series[f(s^2 - s x[i] + x[i]^2), Sequence @@ Evaluate[xd]], {i, 1, n}]; SeriesCoefficient[f, Sequence @@ Evaluate[xd]] ];
%t Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* _Jean-François Alcover_, Nov 26 2018 *)
%o (PARI)
%o P(n, t='t) = {
%o my(z=vector(n, k, eval(Str("z", k))),
%o s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2,
%o f=vector(n, k, s2 + t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1);
%o for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0)));
%o for (k=1, n, g=polcoef(g, 2, z[k]));
%o g;
%o };
%o vector(10, n, P(n,2)) \\ _Gheorghe Coserea_, Nov 27 2018
%Y Row n=3 of A284308.
%Y Cf. A271905, A272551, A283829, A283830, A321711.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Jun 21 2016
%E a(11)-a(15) from _Gheorghe Coserea_, Jun 29 2016
%E a(16) from _Alois P. Heinz_, Mar 24 2017