login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272551
Number of singular vector tuples for a general 4-dimensional n X n X n X n tensor.
5
1, 24, 997, 51264, 2940841, 180296088, 11559133741, 765337680384, 51921457661905, 3590122671128664, 252070718210663749, 17922684123178825536, 1287832671004683373753, 93368940577497932331288, 6821632357294515590873917, 501741975445243527381995520, 37121266623211130111114816929
OFFSET
1,2
LINKS
Shalosh B. Ekhad and Doron Zeilberger, On the Number of Singular Vector Tuples of Hyper-Cubical Tensors, 2016.
Shalosh B. Ekhad and Doron Zeilberger, On the number of Singular Vector Tuples of Hyper-Cubical Tensors, arXiv preprint arXiv:1605.00172 [math.CO], 2016.
MATHEMATICA
a[n_] := Module[{a, b, c, d, s}, s = Series[(
((a + b + c)^n - d^n)*
((b + c + d)^n - a^n)*
((c + d + a)^n - b^n)*
((d + a + b)^n - c^n))/(
(a + b + c - d)*
(b + c + d - a)*
(c + d + a - b)*
(d + a + b - c)),
{a, 0, n}, {b, 0, n}, {c, 0, n}, {d, 0, n}] // Normal // Expand;
Cases[List @@ s, k_Integer a^(n-1) b^(n-1) c^(n-1) d^(n-1)] /. (a|b|c|d) -> 1 // First
];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 17}] (* Jean-François Alcover, Aug 19 2018, after A271905 *)
CROSSREFS
See A271905 for the three-dimensional analog.
Column k=4 of A284308.
Sequence in context: A058810 A265872 A223147 * A222933 A222384 A309421
KEYWORD
nonn
AUTHOR
Doron Zeilberger, May 02 2016
STATUS
approved