login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272549
Expansion of x*(1 + 5*x - 3*x^2 + 7*x^3 + 3*x^4 + 3 *x^5 - x^6 + x^7)/((1 - x)^3*(1 + x + x^2 + x^3)^2).
0
0, 1, 6, 3, 10, 15, 28, 21, 36, 45, 66, 55, 78, 91, 120, 105, 136, 153, 190, 171, 210, 231, 276, 253, 300, 325, 378, 351, 406, 435, 496, 465, 528, 561, 630, 595, 666, 703, 780, 741, 820, 861, 946, 903, 990, 1035, 1128, 1081, 1176, 1225, 1326, 1275, 1378, 1431, 1540, 1485, 1596, 1653, 1770
OFFSET
0,3
COMMENTS
Permutation of triangular numbers.
Consecutive alternating even and odd triangular numbers.
LINKS
Eric Weisstein's World of Mathematics, Triangular Number
FORMULA
O.g.f.: x*(1 + 5*x - 3*x^2 + 7*x^3 + 3*x^4 + 3 *x^5 - x^6 + x^7)/((1 - x)^3*(1 + x + x^2 + x^3)^2).
E.g.f.: (1/2)*((x^2 + x + 1)*cosh(x) + x*sin(x) + (x - 1)*cos(x) + x*(x + 3)*sinh(x)).
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9).
a(n) = (1/8)*(2*n + sin((Pi*n)/2) - cos((Pi*n)/2) + (-1)^n) *(2*n + sin((Pi*n)/2) - cos((Pi*n)/2) + (-1)^n + 2).
a(n) = A000217(A116966(n-1)), n>0.
a(n) mod 2 = A000035(n)
Sum_{n>=1} 1/a(n) = 2.
EXAMPLE
a(0) = 0;
a(1) = 1;
a(2) = 1 + 2 + 3 = 6;
a(3) = 1 + 2 = 3;
a(4) = 1 + 2 + 3 + 4 = 10;
a(5) = 1 + 2 + 3 + 4 + 5 = 15;
a(6) = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28;
a(7) = 1 + 2 + 3 + 4 + 5 + 6 = 21;
a(8) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36, etc.
Illustration of initial terms:
-------------------------------------------------------------------
o
o o o
o o o o o o
o o o o o o o o o o
o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o o o o
--------------------------------------------------------------------
--------------------------------------------------------------------
n=1 n=2 n=3 n=4 n=5 n=6 n=7
MATHEMATICA
LinearRecurrence[{1, 0, 0, 2, -2, 0, 0, -1, 1}, {0, 1, 6, 3, 10, 15, 28, 21, 36}, 59]
Table[(1/8) (2 n + Sin[(Pi n)/2] - Cos[(Pi n)/2] + (-1)^n) (2 n + Sin[(Pi n)/2] - Cos[(Pi n)/2] + (-1)^n + 2), {n, 0, 58}]
Table[(1/8) (2 n - (-1)^(n - 1) + I^((n - 2) (n - 1))) (2 n - (-1)^(n - 1) + I^((n - 2) (n - 1)) + 2), {n, 0, 58}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, May 02 2016
STATUS
approved