login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233321
Triangle read by rows: T(n,k) = number of palindromic partitions of n in which the largest part is equal to k, 1 <= k <= n.
2
1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 0, 1, 1, 3, 1, 1, 0, 1, 1, 1, 3, 0, 1, 0, 1, 1, 4, 2, 3, 0, 1, 0, 1, 1, 2, 4, 1, 2, 0, 1, 0, 1, 1, 5, 3, 5, 1, 2, 0, 1, 0, 1, 1, 2, 6, 2, 4, 0, 2, 0, 1, 0, 1, 1, 6, 5, 8, 2, 4, 0, 2, 0, 1, 0, 1, 1, 3, 8, 3, 7, 1, 3, 0, 2, 0, 1, 0, 1, 1, 7, 7, 11, 4, 7, 1, 3, 0, 2, 0, 1, 0, 1
OFFSET
1,8
COMMENTS
A partition of n is said to be "palindromic" if its parts can be arranged to form a palindrome in at least one way (cf. A025065).
LINKS
EXAMPLE
Triangle begins:
1;
1, 1;
1, 0, 1;
1, 2, 0, 1;
1, 1, 1, 0, 1;
1, 3, 1, 1, 0, 1;
1, 1, 3, 0, 1, 0, 1;
1, 4, 2, 3, 0, 1, 0, 1;
1, 2, 4, 1, 2, 0, 1, 0, 1;
1, 5, 3, 5, 1, 2, 0, 1, 0, 1;
1, 2, 6, 2, 4, 0, 2, 0, 1, 0, 1;
...
MATHEMATICA
(* run this first: *)
Needs["Combinatorica`"];
(* run the following in a different cell: *)
a233321[n_] := {}; Do[Do[a = Partitions[n]; count = 0; Do[If[Max[a[[j]]] == k, x = Permutations[a[[j]]]; Do[If[x[[m]] == Reverse[x[[m]]], count++; Break[]], {m, Length[x]}]], {j, Length[a]}]; AppendTo[a233321[n], count], {k, n}], {n, nmax}]; Table[a233321[n], {n, nmax}](* L. Edson Jeffery, Oct 09 2017 *)
PROG
(PARI) \\ here V(n, k) is A233322.
PartitionCount(n, maxpartsize)={my(t=0); forpart(p=n, t++, maxpartsize); t}
V(n, k)=sum(i=0, (k-n%2)\2, PartitionCount(n\2-i, k));
T(n, k)=V(n, k)-V(n, k-1);
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print) \\ Andrew Howroyd, Oct 09 2017
CROSSREFS
Cf. A025065 (row sums), A233322.
Cf. A233323-A233324 (palindromic compositions of n).
Sequence in context: A373335 A178798 A318277 * A233323 A115381 A115382
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, Dec 10 2013
EXTENSIONS
Corrected row 7 as communicated by Andrew Howroyd. - L. Edson Jeffery, Oct 09 2017
STATUS
approved