login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318277 Triangle read by rows; T(n, k) is the number of divisors of A025487(n) having the same prime signature as A025487(k) where 1 <= k <= n. 2
1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 3, 0, 3, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 0, 2, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 3, 1, 3, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

If A025487(k) doesn't divide A025487(n) then T(n, k) = 0.

Adapted from Clark Kimberling at A074206: "With different offset: A074206(A025487(n)) = sum of all A074206(A025487(k)) such that A025487(k) divides A025487(n) and A025487(k) < A025487(n)."

By looking at the number of divisors of A025487(n) that have the same prime signature as A025487(n) can help in computing A074206, especially if A025487(n) has a lot of divisors.

LINKS

David A. Corneth, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened)

FORMULA

Row sums are A000005(A025487(n)).

EXAMPLE

A025487(9) = 30 and A025487(4) = 6 and have prime signatures (1, 1, 1) and (1, 1) respectively. There are three divisors of 30 with the prime signature (1, 1), being 6, 10 and 15. Therefore, T(9, 4) = 3.

Triangle with rows n and columns k starts:

1,

1, 1,

1, 1, 1,

1, 2, 0, 1,

1, 1, 1, 0, 1,

1, 2, 1, 1, 0, 1,

1, 1, 1, 0, 1, 0, 1,

1, 2, 1, 1, 1, 1, 0, 1,

1, 3, 0, 3, 0, 0, 0, 0, 1,

1, 1, 1, 0, 1, 0, 1, 0, 0, 1,

1, 2, 2, 1, 0, 2, 0, 0, 0, 0, 1,

1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1,

1, 3, 1, 3, 0, 2, 0, 0, 1, 0, 0, 0, 1,

MATHEMATICA

f[n_] := Block[{lim, ww}, Set[{lim, ww}, {Product[Prime@ i, {i, n}], NestList[Append[#, 1] &, {1}, n - 1]} ]; {{{0}}}~Join~Map[Block[{w = #, k = 1}, Sort@ Apply[Join, {{ConstantArray[1, Length@ w]}, If[Length@ # == 0, #, #[[1]]] }] &@ Reap[Do[If[# <= lim, Sow[w]; k = 1, If[k >= Length@ w, Break[], k++]] &@ Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, #]] &@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]], {i, Infinity}]][[-1]]] &, ww]]; With[{s = Sort@ Map[{Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #], #} &, Join @@ f@ 4]}, Table[DivisorSum[s[[n, 1]], 1 &, If[Length@ # == 1, #, TakeWhile[#, # > 0 &]] &@ Sort[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #] &@ #, Greater] == s[[k, -1]] &], {n, Length@ s}, {k, n}]] // Flatten (* Michael De Vlieger, Oct 10 2018 *)

PROG

(PARI) ps(y) = factor(y)[, 2];

tabl(nn) = {v = al(nn); for (n=1, nn, d = divisors(v[n]); for (k=1, n, f = ps(v[k]); nb = #select(x->(ps(x) == f), d); print1(nb, ", "); ); print; ); } \\ Michel Marcus, Oct 11 2018; where al(n) is defined in A025487

CROSSREFS

Cf. A025487, A074206.

Sequence in context: A142724 A174656 A178798 * A233321 A233323 A115381

Adjacent sequences:  A318274 A318275 A318276 * A318278 A318279 A318280

KEYWORD

nonn,tabl

AUTHOR

David A. Corneth, Aug 24 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 09:07 EDT 2021. Contains 347714 sequences. (Running on oeis4.)