login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. A(x) satisfies: A'(x) = A(x*A'(x))^3.
2

%I #6 Dec 07 2013 12:43:14

%S 1,1,3,33,726,25236,1229328,78167484,6193726506,592068123054,

%T 66673324219176,8685890001564984,1290531658541292252,

%U 216188985806157611520,40449991773179254230432,8386998677130790903212000,1914263814914709029067344724,478208364783447353623777136772

%N E.g.f. A(x) satisfies: A'(x) = A(x*A'(x))^3.

%C CONJECTURES:

%C a(n) == 0 (mod 2) for n>=4.

%C a(n) == 0 (mod 2^2) for n>=10.

%C a(n) == 0 (mod 2^3) for n>=18.

%C a(n) == 0 (mod 2^k) for n>=(8*k-6), k>=2.

%C a(n) == 0 (mod 3) for n>=2.

%C a(n) == 0 (mod 3^2) for n>=5.

%C a(n) == 0 (mod 3^3) for n>=7.

%C a(n) == 0 (mod 3^4) for n>=10.

%C a(n) == 0 (mod 3^k) for n>=(3*k-2), k>=3.

%C a(n) == 0 (mod 13) for n>=13.

%H Paul D. Hanna, <a href="/A233319/b233319.txt">Table of n, a(n) for n = 0..100</a>

%F E.g.f. A(x) satisfies: A(x)^3 = A'(x/A(x)^3).

%F E.g.f. A(x) satisfies: A(x) = ( x / Series_Reversion( x*A'(x) ) )^(1/3).

%F a(n) = [x^(n-1)/(n-1)!] A(x)^(3*n)/n for n>=1.

%e E.g.f.: A(x) = 1 + x + 3*x^2/2! + 33*x^3/3! + 726*x^4/4! + 25236*x^5/5! +...

%e such that

%e A(x*A'(x))^3 = A'(x) = 1 + 3*x + 33*x^2/2! + 726*x^3/3! + 25236*x^4/4! +...

%e A(x*A'(x)) = (A'(x))^(1/3) = 1 + x + 9*x^2/2! + 186*x^3/3! + 6330*x^4/4! + 306846*x^5/5! + 19560006*x^6/6! + 1559472498*x^7/7! +...

%e To illustrate a(n) = [x^(n-1)/(n-1)!] A(x)^(3*n)/n, create a table of coefficients of x^k/k!, k>=0, in A(x)^(3*n) like so:

%e A^3: [1, 3, 15, 159, 3240, 106218, 4961250, 305900982, ...];

%e A^6: [1, 6, 48, 588, 11646, 357336, 15709968, 923153004, ...];

%e A^9: [1, 9, 99, 1449, 30078, 899964, 37750104, 2118453588, ...];

%e A^12:[1, 12, 168, 2904, 65340, 1977912, 80833248, 4365682056, ...];

%e A^15:[1, 15, 255, 5115, 126180, 3961350, 161145630, 8476536330, ...];

%e A^18:[1, 18, 360, 8244, 223290, 7375968, 304020000, 15786282132, ...];

%e A^21:[1, 21, 483, 12453, 369306, 12932136, 547172388, 28405637064, ...];

%e A^24:[1, 24, 624, 17904, 578808, 21554064, 944463744, 49549812048, ...]; ...

%e then the diagonal in the above table generates this sequence shift left:

%e [1/1, 6/2, 99/3, 2904/4, 126180/5, 7375968/6, 547172388/7, 49549812048/8, ...].

%e SUMS OF TERM RESIDUES MODULO 2^n.

%e Given a(k) == 0 (mod 2^n) for k>=(8*n-6) for n>=2, then it is interesting to consider the sums of the residues of all terms modulo 2^n for n>=1.

%e Let b(n) = Sum_{k>=0} a(k) (mod 2^n) for n>=1, then the sequence {b(n)} begins:

%e [4, 12, 40, 112, 336, 848, 2128, 5584, 13776, 29648, 64464, 136144, 316368, ...].

%e SUMS OF TERM RESIDUES MODULO 3^n.

%e Given a(k) == 0 (mod 3^n) for k>=(3*n-2) for n>=3, then it is interesting to consider the sums of the residues of all terms modulo 3^n for n>=1.

%e Let c(n) = Sum_{k>=0} a(k) (mod 3^n) for n>=1, then the sequence {c(n)} begins:

%e [2, 17, 71, 368, 1340, 4985, 13733, 59660, 217124, 689516, 2520035, 6594416, 18286118, 72493100, 206416232, 722976884, 2617032608, 8170059617, 25603981622, 93015146708, 256894013555, 832213439720, 2338504300952, 6292517811686, 24650437682951, 71251311202316, 249181919185346, 729594560739527, ...].

%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(subst(A^3, x, x*A' +x*O(x^n)))); n!*polcoeff(A, n)}

%o for(n=0, 25, print1(a(n), ", "))

%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(1/x*serreverse(x/A^3 +x*O(x^n)))); n!*polcoeff(A, n)}

%o for(n=0, 25, print1(a(n), ", "))

%Y Cf. A232686, A231619, A231866, A231899, A232694, A232695, A232696.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Dec 07 2013