OFFSET
0,2
COMMENTS
The denominators are given in A227571.
For general remarks on the e.g.f.s D(n,x), the Debye function with index n = 1, 2, 3, ... see the W. Lang link under A120080.
D(3,x) := (3/x^3)*int(t^3/(exp(x) - 1), t=0..x) is the e.g.f. of the rationals r(3,n) = 3*B(n)/(n+3), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n).
See the Abramowitz-Stegun link for the integral appearing in
D(3,x) and a series expansion valid for |x| < 2*Pi.
Differs from these sequences at n = 1292, 2624, 2770, 2778.... - Andrey Zabolotskiy, Dec 08 2023
REFERENCES
L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band V: Statistische Physik, Akademie Verlag, Leipzig, p. 195, equ. (63.5), and footnote 1 on p. 197.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=3, with a factor (x^3)/3 extracted.
FORMULA
a(n) = numerator(3*B(n)/(n+3)), n >= 0, with the Bernoulli numbers B(n).
EXAMPLE
The rationals r(3,n), n=0..15 are: 1, -3/8, 1/10, 0, -1/70, 0, 1/126, 0, -1/110, 0, 5/286, 0, -691/13650, 0, 7/34, 0.
MATHEMATICA
A227570[n_]:=Numerator[3BernoulliB[n]/(n+3)];
Array[A227570, 50, 0] (* Paolo Xausa, Dec 08 2023 *)
PROG
(Sage)
print([(bernoulli(n)*3/(n+3)).numerator() for n in range(30)]) # Andrey Zabolotskiy, Dec 08 2023
CROSSREFS
KEYWORD
sign,easy,frac
AUTHOR
Wolfdieter Lang, Jul 16 2013
STATUS
approved