login
A227568
Largest k such that a partition of n into distinct parts with boundary size k exists.
3
0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10
OFFSET
0,4
COMMENTS
The boundary size is the number of parts having fewer than two neighbors.
LINKS
FORMULA
a(n) = max { k : A227345(n,k) > 0 } = max { k : A227551(n,k) > 0 }.
a(n) = floor(2*sqrt(n/3)).
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, 1, 0),
`if`(i<1, 0, max(`if`(t>1, 1, 0)+b(n, i-1, iquo(t, 2)),
`if`(i>n, 0, `if`(t=2, 1, 0)+b(n-i, i-1, iquo(t, 2)+2)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..100);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t > 1, 1, 0], If[i < 1, 0, Max[If[t > 1, 1, 0] + b[n, i - 1, Quotient[t, 2]], If[i > n, 0, If[t == 2, 1, 0] + b[n - i, i - 1, Quotient[t, 2] + 2]]]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 21 2018, translated from Maple *)
CROSSREFS
Where records occur: A077043.
Sequence in context: A284263 A087233 A104147 * A232746 A052146 A097882
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 16 2013
STATUS
approved