OFFSET
0,14
COMMENTS
The boundary size is the number of parts having fewer than two neighbors.
LINKS
Alois P. Heinz, Rows n = 0..600, flattened
EXAMPLE
T(12,1) = 1: [12].
T(12,2) = 6: [1,11], [2,10], [3,4,5], [3,9], [4,8], [5,7].
T(12,3) = 7: [1,2,3,6], [1,2,9], [1,3,8], [1,4,7], [1,5,6], [2,3,7], [2,4,6].
T(12,4) = 1: [1,2,4,5].
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 1;
0, 1, 2;
0, 1, 3;
0, 1, 3, 1;
0, 1, 3, 2;
0, 1, 5, 2;
0, 1, 5, 4;
0, 1, 5, 6;
0, 1, 6, 7, 1;
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),
expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
`if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
end:
T:= n-> (p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
seq(T(n), n=0..30);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t > 1, x, 1], Expand[If[i < 1, 0, If[t > 1, x, 1]*b[n, i - 1, Quotient[t, 2]] + If[i > n, 0, If[t == 2, x, 1]*b[n - i, i - 1, Quotient[t, 2] + 2]]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 12 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
Alois P. Heinz, Jul 16 2013
STATUS
approved