login
A227551
Number T(n,k) of partitions of n into distinct parts with boundary size k; triangle T(n,k), n>=0, 0<=k<=A227568(n), read by rows.
14
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 3, 1, 0, 1, 3, 2, 0, 1, 5, 2, 0, 1, 5, 4, 0, 1, 5, 6, 0, 1, 6, 7, 1, 0, 1, 6, 10, 1, 0, 1, 7, 11, 3, 0, 1, 9, 13, 4, 0, 1, 7, 18, 6, 0, 1, 8, 20, 9, 0, 1, 10, 21, 14, 0, 1, 9, 27, 16, 1, 0, 1, 10, 29, 22, 2
OFFSET
0,14
COMMENTS
The boundary size is the number of parts having fewer than two neighbors.
LINKS
EXAMPLE
T(12,1) = 1: [12].
T(12,2) = 6: [1,11], [2,10], [3,4,5], [3,9], [4,8], [5,7].
T(12,3) = 7: [1,2,3,6], [1,2,9], [1,3,8], [1,4,7], [1,5,6], [2,3,7], [2,4,6].
T(12,4) = 1: [1,2,4,5].
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 1;
0, 1, 2;
0, 1, 3;
0, 1, 3, 1;
0, 1, 3, 2;
0, 1, 5, 2;
0, 1, 5, 4;
0, 1, 5, 6;
0, 1, 6, 7, 1;
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),
expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
`if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
end:
T:= n-> (p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
seq(T(n), n=0..30);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t > 1, x, 1], Expand[If[i < 1, 0, If[t > 1, x, 1]*b[n, i - 1, Quotient[t, 2]] + If[i > n, 0, If[t == 2, x, 1]*b[n - i, i - 1, Quotient[t, 2] + 2]]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 12 2016, after Alois P. Heinz *)
CROSSREFS
Row sums give: A000009.
Last elements of rows give: A227552.
Cf. A227345 (a version with trailing zeros), A053993, A201077, A227568, A224878 (one part of size 0 allowed).
Sequence in context: A308999 A208343 A029324 * A029318 A358402 A210381
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Jul 16 2013
STATUS
approved