login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227552
Number of partitions of n into distinct parts with maximal boundary size.
3
1, 1, 1, 1, 1, 2, 3, 1, 2, 2, 4, 6, 1, 1, 3, 4, 6, 9, 14, 1, 2, 3, 5, 8, 11, 17, 24, 1, 1, 3, 5, 8, 11, 18, 24, 35, 49, 1, 2, 3, 6, 9, 14, 21, 30, 42, 60, 81, 1, 1, 3, 5, 9, 13, 21, 29, 43, 60, 84, 113, 156, 1, 2, 3, 6, 10, 15, 24, 35, 50, 71, 99, 134, 184, 246
OFFSET
0,6
COMMENTS
The boundary size is the number of parts having less than two neighbors.
LINKS
FORMULA
a(n) = A227551(n,A227568(n)).
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),
expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
`if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
end:
a:= n-> (p->coeff(p, x, degree(p)))(b(n$2, 0)):
seq(a(n), n=0..100);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t>1, x, 1], Expand[If[i<1, 0, If[t>1, x, 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t==2, x, 1] * b[n-i, i-1, Quotient[t, 2]+2]]]]]; a[n_] := Function [p, Coefficient[p, x, Exponent[p, x]]][b[n, n, 0]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)
CROSSREFS
Last elements of rows of A227551.
Last nonzero elements of rows of A227345.
Sequence in context: A366294 A351441 A254761 * A205003 A159956 A053839
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 16 2013
STATUS
approved