|
|
A227555
|
|
Number of n X 3 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 4 binary array having nonzero determinant, with rows and columns of the latter in lexicographically nondecreasing order.
|
|
1
|
|
|
7, 33, 147, 585, 2080, 6653, 19356, 51827, 129090, 301882, 668004, 1407882, 2841813, 5519404, 10355651, 18833130, 33296081, 57369975, 96549697, 159011007, 256713726, 406881423, 633961558, 972192389, 1468928820, 2188909112
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = (1/2217600)*n^11 - (1/201600)*n^10 + (1/3780)*n^9 - (9/4480)*n^8 + (6403/201600)*n^7 - (4609/28800)*n^6 + (4331/4032)*n^5 - (40753/13440)*n^4 + (1339067/151200)*n^3 - (443809/50400)*n^2 + (83507/9240)*n.
G.f.: x*(7 - 51*x + 213*x^2 - 541*x^3 + 967*x^4 - 1246*x^5 + 1197*x^6 - 848*x^7 + 439*x^8 - 150*x^9 + 31*x^10) / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>12.
(End)
|
|
EXAMPLE
|
Some solutions for n=4:
..0..0..1....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..0..1
..0..0..0....0..0..0....0..0..0....1..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..1..1....0..0..0....0..0..1....0..1..1....1..0..0....0..0..0
..0..0..0....0..0..1....0..1..1....1..1..0....1..0..1....0..1..1....1..0..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|