login
A227558
T(n,k)=Number of nXk 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X(k+1) binary array having nonzero determinant, with rows and columns of the latter in lexicographically nondecreasing order
5
2, 4, 4, 7, 12, 7, 11, 33, 33, 11, 16, 81, 147, 81, 16, 22, 179, 585, 585, 179, 22, 29, 362, 2080, 3939, 2080, 362, 29, 37, 680, 6653, 23940, 23940, 6653, 680, 37, 46, 1201, 19356, 130231, 256067, 130231, 19356, 1201, 46, 56, 2014, 51827, 635595, 2474769, 2474769
OFFSET
1,1
COMMENTS
Table starts
..2....4......7.......11.........16...........22...........29...........37
..4...12.....33.......81........179..........362..........680.........1201
..7...33....147......585.......2080.........6653........19356........51827
.11...81....585.....3939......23940.......130231.......635595......2807533
.16..179...2080....23940.....256067......2474769.....21404483....166020522
.22..362...6653...130231....2474769.....43380243....685331477...9693885819
.29..680..19356...635595...21404483....685331477..20073109783.528869530105
.37.1201..51827..2807533..166020522...9693885819.528869530105
.46.2014.129090.11342619.1163861138.123170298613
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
k=2: a(n) = (1/40)*n^5 + (17/24)*n^3 + (34/15)*n + 1
k=3: [polynomial of degree 11]
k=4: [polynomial of degree 23] for n>5
k=5: [polynomial of degree 47] for n>13
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..0....0..1..0..0....0..0..1..0....0..0..1..0....0..0..0..0
..0..1..0..0....1..0..0..0....1..0..1..0....0..1..0..0....0..0..0..1
..0..1..0..0....0..1..0..1....0..0..0..0....0..1..0..1....0..0..1..0
..0..0..1..1....0..0..0..1....0..0..1..0....1..0..1..0....1..0..0..1
CROSSREFS
Column 1 is A000124
Sequence in context: A223777 A227089 A225900 * A296651 A297085 A224158
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 16 2013
STATUS
approved