login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225895
Number of n X 3 binary arrays whose sum with another n X 3 binary array containing no more than a single 1 has rows and columns in lexicographically nondecreasing order.
1
7, 33, 145, 545, 1770, 5052, 12910, 30055, 64701, 130387, 248427, 451117, 785840, 1320222, 2148504, 3399307, 5244979, 7912725, 11697733, 16978521, 24234742, 34067696, 47223810, 64621359, 87380713, 116858407, 154685343, 202809445
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/3360)*n^8 + (3/560)*n^7 + (5/144)*n^6 + (7/120)*n^5 + (761/1440)*n^4 + (81/80)*n^3 + (122/63)*n^2 + (89/210)*n + 3.
Conjectures from Colin Barker, Sep 05 2018: (Start)
G.f.: x*(7 - 30*x + 100*x^2 - 160*x^3 + 195*x^4 - 162*x^5 + 82*x^6 - 23*x^7 + 3*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..1....0..1..1....0..0..0....0..0..1....0..0..1....0..0..1....0..0..0
..0..1..0....1..0..0....1..1..0....1..0..0....1..1..0....0..0..1....0..0..1
..1..0..0....1..1..1....1..1..0....1..0..0....1..1..1....1..0..0....1..1..0
CROSSREFS
Column 3 of A225900.
Sequence in context: A372878 A141291 A278027 * A089106 A211829 A227555
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 20 2013
STATUS
approved