login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into distinct parts with maximal boundary size.
3

%I #14 Feb 15 2017 09:27:05

%S 1,1,1,1,1,2,3,1,2,2,4,6,1,1,3,4,6,9,14,1,2,3,5,8,11,17,24,1,1,3,5,8,

%T 11,18,24,35,49,1,2,3,6,9,14,21,30,42,60,81,1,1,3,5,9,13,21,29,43,60,

%U 84,113,156,1,2,3,6,10,15,24,35,50,71,99,134,184,246

%N Number of partitions of n into distinct parts with maximal boundary size.

%C The boundary size is the number of parts having less than two neighbors.

%H Alois P. Heinz, <a href="/A227552/b227552.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A227551(n,A227568(n)).

%p b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),

%p expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+

%p `if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))

%p end:

%p a:= n-> (p->coeff(p, x, degree(p)))(b(n$2, 0)):

%p seq(a(n), n=0..100);

%t b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t>1, x, 1], Expand[If[i<1, 0, If[t>1, x, 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t==2, x, 1] * b[n-i, i-1, Quotient[t, 2]+2]]]]]; a[n_] := Function [p, Coefficient[p, x, Exponent[p, x]]][b[n, n, 0]]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Feb 15 2017, translated from Maple *)

%Y Last elements of rows of A227551.

%Y Last nonzero elements of rows of A227345.

%Y Cf. A053993, A201077.

%K nonn

%O 0,6

%A _Alois P. Heinz_, Jul 16 2013