login
A227571
Denominators of rationals with e.g.f. D(3,x), a Debye function.
3
1, 8, 10, 1, 70, 1, 126, 1, 110, 1, 286, 1, 13650, 1, 34, 1, 3230, 1, 5586, 1, 2530, 1, 1150, 1, 24570, 1, 58, 1, 8990, 1, 157542, 1, 5950, 1, 74, 1, 24949470, 1, 82, 1, 193930, 1, 27090, 1, 10810, 1, 4606, 1, 788970, 1, 1166, 1, 29150, 1, 15162, 1
OFFSET
0,2
COMMENTS
See the comments, references and links under A227570.
FORMULA
a(n) = denominator(3*B(n)/(n+3)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n).
The e.g.f. of the rationals r(3,n) := 3*B(n)/(n+3) is D(3,x) = (3/x^3)*int(t^3/(exp(x) - 1), t=0..x).
EXAMPLE
The rationals r(3,n), n=0..15 are: 1, -3/8, 1/10, 0, -1/70, 0, 1/126, 0, -1/110, 0, 5/286, 0, -691/13650, 0, 7/34, 0.
MATHEMATICA
A227571[n_]:=Denominator[3BernoulliB[n]/(n+3)];
Array[A227571, 100, 0] (* Paolo Xausa, Dec 08 2023 *)
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 16 2013
STATUS
approved