login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest k such that a partition of n into distinct parts with boundary size k exists.
3

%I #25 May 21 2018 15:12:05

%S 0,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,

%T 6,6,6,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,

%U 9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10

%N Largest k such that a partition of n into distinct parts with boundary size k exists.

%C The boundary size is the number of parts having fewer than two neighbors.

%H Alois P. Heinz, <a href="/A227568/b227568.txt">Table of n, a(n) for n = 0..2000</a>

%F a(n) = max { k : A227345(n,k) > 0 } = max { k : A227551(n,k) > 0 }.

%F a(n) = floor(2*sqrt(n/3)).

%p b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, 1, 0),

%p `if`(i<1, 0, max(`if`(t>1, 1, 0)+b(n, i-1, iquo(t, 2)),

%p `if`(i>n, 0, `if`(t=2, 1, 0)+b(n-i, i-1, iquo(t, 2)+2)))))

%p end:

%p a:= n-> b(n$2, 0):

%p seq(a(n), n=0..100);

%t b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t > 1, 1, 0], If[i < 1, 0, Max[If[t > 1, 1, 0] + b[n, i - 1, Quotient[t, 2]], If[i > n, 0, If[t == 2, 1, 0] + b[n - i, i - 1, Quotient[t, 2] + 2]]]]];

%t a[n_] := b[n, n, 0];

%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, May 21 2018, translated from Maple *)

%Y Where records occur: A077043.

%Y Cf. A227345, A227551.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Jul 16 2013