OFFSET
0,13
COMMENTS
Also the number of integer partitions of n whose right half (inclusive) sums to n-k.
EXAMPLE
Triangle begins:
1
1 0
1 1 0
1 1 1 0
1 0 3 1 0
1 0 2 3 1 0
1 0 1 4 4 1 0
1 0 0 3 6 4 1 0
1 0 0 1 7 7 5 1 0
1 0 0 1 4 8 10 5 1 0
1 0 0 0 3 6 14 11 6 1 0
1 0 0 0 1 5 12 16 14 6 1 0
1 0 0 0 1 2 12 14 23 16 7 1 0
1 0 0 0 0 2 7 13 24 27 19 7 1 0
1 0 0 0 0 1 5 9 24 30 35 21 8 1 0
1 0 0 0 0 1 3 7 17 31 42 40 25 8 1 0
1 0 0 0 0 0 2 4 16 23 46 51 51 27 9 1 0
1 0 0 0 0 0 1 3 10 21 37 57 69 57 31 9 1 0
1 0 0 0 0 0 1 2 7 15 34 47 83 81 69 34 10 1 0
For example, row n = 9 counts the following partitions:
(9) . . (333) (432) (54) (63) (72) (81)
(441) (522) (621) (711)
(22221) (531) (3321) (4311)
(111111111) (3222) (4221) (5211)
(32211) (33111) (6111)
(2211111) (42111)
(3111111) (51111)
(21111111) (222111)
(321111)
(411111)
For example, the partition y = (3,2,2,1,1) has left half (exclusive) (3,2), with sum 5, so y is counted under T(9,5).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Total[Take[#, Floor[Length[#]/2]]]==k&]], {n, 0, 10}, {k, 0, n}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Feb 27 2023
STATUS
approved