|
|
A360673
|
|
Number of multisets of positive integers whose right half (exclusive) sums to n.
|
|
17
|
|
|
1, 2, 7, 13, 27, 37, 73, 89, 156, 205, 315, 387, 644, 749, 1104, 1442, 2015, 2453, 3529, 4239, 5926, 7360, 9624, 11842, 16115, 19445, 25084, 31137, 39911, 48374, 62559, 75135, 95263, 115763, 143749, 174874, 218614, 261419, 321991, 388712, 477439, 569968, 698493
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 1 + Sum_{k>=1} x^k*(2 - x^k)/((1 - x^k)^(k+2) * Product_{j=1..k-1} (1-x^j)). - Andrew Howroyd, Mar 11 2023
|
|
EXAMPLE
|
The a(0) = 1 through a(3) = 13 multisets:
{} {1,1} {1,2} {1,3}
{1,1,1} {2,2} {2,3}
{1,1,2} {3,3}
{1,2,2} {1,1,3}
{2,2,2} {1,2,3}
{1,1,1,1} {1,3,3}
{1,1,1,1,1} {2,2,3}
{2,3,3}
{3,3,3}
{1,1,1,2}
{1,1,1,1,2}
{1,1,1,1,1,1}
{1,1,1,1,1,1,1}
For example, the multiset y = {1,1,1,1,2} has right half (exclusive) {1,2}, with sum 3, so y is counted under a(3).
|
|
MATHEMATICA
|
Table[Length[Select[Join@@IntegerPartitions/@Range[0, 3*k], Total[Take[#, Floor[Length[#]/2]]]==k&]], {k, 0, 15}]
|
|
PROG
|
(PARI) seq(n)={my(s=1 + O(x*x^n), p=s); for(k=1, n, s += p*x^k*(2-x^k)/(1-x^k + O(x*x^(n-k)))^(k+2); p /= 1 - x^k); Vec(s)} \\ Andrew Howroyd, Mar 11 2023
|
|
CROSSREFS
|
First for prime indices, second for partitions, third for prime factors:
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|