|
|
A360385
|
|
prime(k) such that (k BitXOR prime(k)) is prime, where BitXOR is the binary bitwise XOR.
|
|
1
|
|
|
2, 7, 13, 29, 37, 43, 53, 61, 71, 79, 101, 131, 151, 199, 223, 281, 293, 317, 337, 349, 383, 409, 421, 457, 521, 557, 569, 641, 683, 733, 911, 983, 1013, 1049, 1151, 1223, 1249, 1373, 1429, 1511, 1531, 1721, 1747, 1759, 1789, 1831, 1931, 2017, 2029, 2213, 2311
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
2 is a term since k = primepi(2) = 1 and (1 BitXOR 2) = 3 is a prime number.
151 is a term since k = primepi(151) = 36 and (36 BitXOR 151) = 179 is a prime number.
|
|
MAPLE
|
q:= p-> andmap(isprime, [p, Bits[Xor](p, numtheory[pi](p))]):
|
|
MATHEMATICA
|
Select[Prime[Range[400]], PrimeQ[BitXor[#, PrimePi[#]]] &] (* Amiram Eldar, Feb 05 2023 *)
|
|
PROG
|
(PARI) { p = primes([1, 2311]); for (k=1, #p, if (isprime(bitxor(k, p[k])), print1 (p[k]", "))) } \\ Rémy Sigrist, Feb 05 2023
(Python)
from sympy import isprime, primerange
print([p for i, p in enumerate(primerange(2, 10**4), 1) if isprime(i^p)]) # Michael S. Branicky, Feb 05 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|