login
A360388
Positive integers with binary expansion (b(1), ..., b(m)) such that Sum_{i = 1..m-k} b(i)*b(i+k) is odd for all k = 0..m-1.
1
1, 11, 13, 2787, 3189, 36783, 37063, 43331, 47803, 49813, 56669, 58121, 62961, 9205487, 16215601, 23070091, 23248907, 27264653, 27475981, 43469906355, 55167946629, 75985591407, 80056245671, 81489328999, 83389490039, 87235136243, 88437433811, 90400346819
OFFSET
1,2
COMMENTS
Leading zeros in binary expansions are ignored.
All terms are odd and odious (A092246).
This sequence is infinite since we can, from a given term, build another larger term (see Guy reference).
See A053006 for the distinct binary lengths.
If m is a term, then A030101(m) is also a term.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, E38.
EXAMPLE
For n = 11:
- the binary expansion of 11 is b = (1,1,0,1),
- b(1)*b(1) + b(2)*b(2) + b(3)*b(3) + b(4)*b(4) = 1 + 1 + 0 + 1 = 3 is odd,
- b(1)*b(2) + b(2)*b(3) + b(3)*b(4) = 1 + 0 + 0 = 1 is odd,
- b(1)*b(3) + b(2)*b(4) = 0 + 1 = 1 is odd,
- b(1)*b(4) = 1 is odd,
- so 11 belongs to the sequence.
PROG
(PARI) See Links section.
(Python)
from itertools import count, islice
from functools import reduce
from operator import ixor
def A360388_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue, 1)):
b = tuple(int(d) for d in bin(n)[2:])
m = len(b)
if all(reduce(ixor, (b[i]&b[i+k] for i in range(m-k))) for k in range(m)):
yield n
A360388_list = list(islice(A360388_gen(), 10)) # Chai Wah Wu, Feb 07 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Feb 05 2023
STATUS
approved