login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141777
Primes of the form -3*x^2 + 4*x*y + 6*y^2 (as well as of the form 7*x^2 + 12*x*y + 2*y^2).
2
2, 7, 13, 29, 61, 79, 101, 109, 127, 149, 151, 167, 173, 197, 239, 263, 271, 277, 293, 349, 359, 373, 431, 439, 461, 479, 503, 541, 557, 607, 613, 677, 701, 733, 743, 821, 853, 877, 887, 919, 941, 967, 997, 1031, 1063, 1069, 1117, 1151, 1223, 1229, 1231
OFFSET
1,1
COMMENTS
Discriminant = 88. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
EXAMPLE
a(2) = 7 because we can write 7 = -3*1^2 + 4*1*1 + 6*1^2 (= 7*1^2 + 12*1*0 + 2*0^2).
CROSSREFS
Cf. A141776 (d=88).
Sequence in context: A360673 A183435 A360385 * A297883 A215206 A298215
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008
EXTENSIONS
More terms from Colin Barker, Apr 05 2015
STATUS
approved