OFFSET
1,1
COMMENTS
All Mersenne primes (A000668) belong to the sequence. - Rémy Sigrist, Feb 05 2023
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
2 is a term since k = primepi(2) = 1 and (1 BitOR 2) = 3 is a prime number.
101 is a term since k = primepi(101) = 26 and (26 BitOR 101) = 127 is a prime number.
MAPLE
q:= p-> andmap(isprime, [p, Bits[Or](p, numtheory[pi](p))]):
select(q, [$2..1000])[]; # Alois P. Heinz, Feb 05 2023
MATHEMATICA
Select[Prime[Range[130]], PrimeQ[BitOr[#, PrimePi[#]]] &] (* Amiram Eldar, Feb 05 2023 *)
PROG
(PARI) { p = primes([1, 719]); for (k=1, #p, if (isprime(bitor(k, p[k])), print1 (p[k]", "))) } \\ Rémy Sigrist, Feb 05 2023
(Python)
from sympy import isprime, primerange
print([p for i, p in enumerate(primerange(2, 800), 1) if isprime(i|p)]) # Michael S. Branicky, Feb 05 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Najeem Ziauddin, Feb 04 2023
STATUS
approved