OFFSET
1,1
COMMENTS
A prime p is in this sequence if and only if p-1 = Product_{i} (p_i)^(a_i) with p_j - 1 = Product_{j<i} (p_j)^(a_j).
This sequence contains all Fermat primes (A019434).
LINKS
John Machacek, Egyptian Fractions and Prime Power Divisors, arXiv:1706.01008 [math.NT], 2017.
EXAMPLE
p = 43 is in the sequence because 43-1 = 42 = 2*3*7, 7-1 = 6 = 2*3, 3-1 = 2.
MATHEMATICA
upTo[mx_] := Block[{ric}, ric[n_, p_] := If[n < mx, Block[{m = n p}, If[PrimeQ[n + 1], Sow[n+1]; ric[n (n + 1), n+1]]; If[IntegerExponent[n, p] == 1, While[m < mx, ric[m, p]; m *= p]]]]; Sort[Reap[ric[1, 2]][[2, 1]]]]; upTo[10^20] (* Giovanni Resta, May 27 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
John Machacek, May 27 2017
EXTENSIONS
a(20)-a(29) from Giovanni Resta, May 27 2017
STATUS
approved