login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360617
Half the number of prime factors of n (counted with multiplicity, A001222), rounded up.
9
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 1
OFFSET
1,8
EXAMPLE
The prime indices of 378 are {1,2,2,2,4}, so a(378) = ceiling(5/2) = 3.
MATHEMATICA
Table[Ceiling[PrimeOmega[n]/2], {n, 100}]
CROSSREFS
Positions of 0's and 1's are 1 and A037143.
Positions of first appearances are A081294.
Rounding down instead of up gives A360616.
A112798 lists prime indices, length A001222, sum A056239, median* A360005.
A360673 counts multisets by right sum (exclusive), inclusive A360671.
First for prime indices, second for partitions, third for prime factors:
- A360676 gives left sum (exclusive), counted by A360672, product A361200.
- A360677 gives right sum (exclusive), counted by A360675, product A361201.
- A360678 gives left sum (inclusive), counted by A360675, product A347043.
- A360679 gives right sum (inclusive), counted by A360672, product A347044.
Sequence in context: A333915 A293234 A347441 * A102097 A361566 A354991
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2023
STATUS
approved