login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A354991
Number of divisors d of n for which A344005(d) = A344005(n), where A344005(n) is the smallest positive integer m such that n divides m*(m+1).
7
1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} [A344005(d) = A344005(n)], where [ ] is the Iverson bracket.
a(n) = A000005(n) - A354992(n).
a(n) <= A354990(n).
MATHEMATICA
s[n_] := Module[{m = 1}, While[! Divisible[m*(m + 1), n], m++]; m]; a[n_] := Module[{sn = s[n]}, 1 + DivisorSum[n, 1 &, # < n && s[#] == sn &]]; Array[a, 100] (* Amiram Eldar, Jun 17 2022 *)
PROG
(PARI)
A344005(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m))); \\ From A344005
A354991(n) = { my(x=A344005(n)); sumdiv(n, d, A344005(d)==x); };
CROSSREFS
Cf. A000005, A344005, A354990, A354992, A354994 (positions of 1's).
Cf. also A344590, A345935.
Sequence in context: A360617 A102097 A361566 * A354990 A318749 A347708
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 17 2022
STATUS
approved