login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344590
Number of divisors d of n for which A011772(d) = A011772(n), where A011772(n) is the smallest number m such that m(m+1)/2 is divisible by n.
9
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 1, 2
OFFSET
1,6
LINKS
FORMULA
a(n) = Sum_{d|n} [A011772(d) = A011772(n)], where [ ] is the Iverson bracket.
a(n) = A000005(n) - A344589(n).
a(n) <= A344770(n).
EXAMPLE
36 has 9 divisors: 1, 2, 3, 4, 6, 9, 12, 18, 36. When A011772 is applied to them, one obtains values [1, 3, 2, 7, 3, 8, 8, 8, 8], thus there are four divisors that obtain the maximal value 8 obtained at 36 itself, therefore a(36) = 4.
MATHEMATICA
A011772[n_] := Module[{m = 1}, While[Not[IntegerQ[m(m+1)/(2n)]], m++]; m];
a[n_] := With[{m = A011772[n]}, Count[Divisors[n], d_ /; A011772[d] == m]];
Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
PROG
(PARI)
A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
A344590(n) = { my(x=A011772(n)); sumdiv(n, d, A011772(d)==x); };
(Python)
from itertools import combinations
from functools import reduce
from operator import mul
from sympy import factorint, divisors
from sympy.ntheory.modular import crt
def A011772(n):
plist = [p**q for p, q in factorint(2*n).items()]
if len(plist) == 1:
return n-1 if plist[0] % 2 else 2*n-1
return min(min(crt([m, 2*n//m], [0, -1])[0], crt([2*n//m, m], [0, -1])[0]) for m in (reduce(mul, d) for l in range(1, len(plist)//2+1) for d in combinations(plist, l)))
def A344590(n):
m = A011772(n)
return sum(1 for d in divisors(n) if A011772(d) == m) # Chai Wah Wu, Jun 02 2021
CROSSREFS
Cf. A000005, A011772, A344588 (positions of records), A344589, A344758, A344770, A344881 (positions of ones), A344882 (of terms > 1).
Sequence in context: A031230 A355032 A244226 * A111616 A299152 A332770
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 31 2021
STATUS
approved