login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244226
Length of runs in A244221 (Greedy Catalan Base, A014418, reduced modulo 2).
7
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2
OFFSET
0,5
COMMENTS
Also the length of runs in A244220.
Note: The indexing of A244220 and A244221 starts from zero, so the starting offset of this sequence is zero also.
LINKS
EXAMPLE
The first time we obtain value three at a(112) = 3, indicating that the first run of 3 in A244220 and A244221 starts at the position A244219(112) = 130, and indeed, it's the first time there are three consecutive "even" representations in Greedy Catalan Base:
A014418(130) = 30020,
A014418(131) = 30100,
A014418(132) = 100000,
A014418(133) = 100001.
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(definec (A244226 n) (if (zero? n) 1 (let* ((prev_run_ends_at (A244218 (- n 1))) (prevpar (A244221 prev_run_ends_at))) (let loop ((i (+ 1 prev_run_ends_at))) (cond ((= (A244221 (+ i 1)) prevpar) (- i prev_run_ends_at)) (else (loop (+ i 1))))))))
CROSSREFS
A244218 gives the partial sums (the ending points of corresponding runs), while A244219 gives the starting points.
A244227 gives the even bisection, while the odd bisection is A000012 (all-1 sequence).
Sequence in context: A120888 A031230 A355032 * A344590 A111616 A299152
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 23 2014
STATUS
approved