login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Length of runs in A244221 (Greedy Catalan Base, A014418, reduced modulo 2).
7

%I #12 Jun 25 2014 13:12:40

%S 1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,2,1,

%T 1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,

%U 2,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,2,1,1,1,2

%N Length of runs in A244221 (Greedy Catalan Base, A014418, reduced modulo 2).

%C Also the length of runs in A244220.

%C Note: The indexing of A244220 and A244221 starts from zero, so the starting offset of this sequence is zero also.

%H Antti Karttunen, <a href="/A244226/b244226.txt">Table of n, a(n) for n = 0..4120</a>

%e The first time we obtain value three at a(112) = 3, indicating that the first run of 3 in A244220 and A244221 starts at the position A244219(112) = 130, and indeed, it's the first time there are three consecutive "even" representations in Greedy Catalan Base:

%e A014418(130) = 30020,

%e A014418(131) = 30100,

%e A014418(132) = 100000,

%e A014418(133) = 100001.

%o (Scheme, with _Antti Karttunen_'s IntSeq-library)

%o (definec (A244226 n) (if (zero? n) 1 (let* ((prev_run_ends_at (A244218 (- n 1))) (prevpar (A244221 prev_run_ends_at))) (let loop ((i (+ 1 prev_run_ends_at))) (cond ((= (A244221 (+ i 1)) prevpar) (- i prev_run_ends_at)) (else (loop (+ i 1))))))))

%Y A244218 gives the partial sums (the ending points of corresponding runs), while A244219 gives the starting points.

%Y A244227 gives the even bisection, while the odd bisection is A000012 (all-1 sequence).

%K nonn

%O 0,5

%A _Antti Karttunen_, Jun 23 2014