0,3

The ending points of runs in A244220 and A244221.

Positions where A014418(n+1) <> A014418(n) modulo 2. (Same is true for A244161).

Antti Karttunen, Table of n, a(n) for n = 0..4120

a(0) = 0, a(n) = A244226(n) + A244218(n-1).

(Scheme, with Antti Karttunen's IntSeq-library, two alternative definitions)

(definec (A244218 n) (if (zero? n) 0 (+ (A244226 n) (A244218 (- n 1)))))

(define A244218 (NONZERO-POS 0 0 (lambda (n) (modulo (- (A014418 (+ n 1)) (A014418 n)) 2))))

Cf. A014418, A244161, A244220, A244221, A244219 (gives the corresponding starting points).

Partial sums of A244226.

Sequence in context: A171519 A072099 A046841 * A164514 A000037 A028761

Adjacent sequences: A244215 A244216 A244217 * A244219 A244220 A244221

nonn

Antti Karttunen, Jun 23 2014

approved