login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299152
Denominators of the positive solution to 2^(n-1) = Sum_{d|n} a(d) * a(n/d).
6
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,4
LINKS
EXAMPLE
Sequence begins: 1, 1, 2, 7/2, 8, 14, 32, 121/2, 126, 248, 512, 1003, 2048, 4064, 8176, 130539/8, 32768.
MATHEMATICA
nn=50;
sys=Table[2^(n-1)==Sum[a[d]*a[n/d], {d, Divisors[n]}], {n, nn}];
Denominator[Array[a, nn]/.Solve[sys, Array[a, nn]][[2]]]
PROG
(PARI)
up_to = 65537;
prepareA299151perA299152(up_to) = { my(vmemo = vector(up_to)); for(n=1, up_to, vmemo[n] = if(1==n, n, (2^(n-1)-sumdiv(n, d, if((d>1)&&(d<n), vmemo[d]*vmemo[n/d], 0)))/2)); (vmemo); };
v299151perA299152 = prepareA299151perA299152(up_to);
A299151perA299152(n) = v299151perA299152[n];
\\ Or without memoization as:
A299151perA299152(n) = if(1==n, n, (2^(n-1)-sumdiv(n, d, if((d>1)&&(d<n), A299151perA299152(d)*A299151perA299152(n/d), 0)))/2);
A299152(n) = denominator(A299151perA299152(n)); \\ Antti Karttunen, Jul 29 2018
KEYWORD
nonn,frac
AUTHOR
Gus Wiseman, Feb 03 2018
EXTENSIONS
More terms from Antti Karttunen, Jul 29 2018
STATUS
approved