login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A154843
Triangular array, T(n,k) = s(n,k) + s(n,n-k), where s(n,k) are the Stirling numbers of the first kind.
2
2, 1, 1, 1, -2, 1, 1, -1, -1, 1, 1, -12, 22, -12, 1, 1, 14, -15, -15, 14, 1, 1, -135, 359, -450, 359, -135, 1, 1, 699, -1589, 889, 889, -1589, 699, 1, 1, -5068, 13390, -15092, 13538, -15092, 13390, -5068, 1, 1, 40284, -109038, 113588, -44835, -44835, 113588, -109038, 40284, 1
OFFSET
0,1
COMMENTS
Except for the first two rows the row sums are zero.
FORMULA
T(n,k) = s(n, k) + s(n, n - k), where s(n,k) are the Stirling numbers of the first kind (A048994).
EXAMPLE
Triangle begins as:
2;
1, 1;
1, -2, 1;
1, -1, -1, 1;
1, -12, 22, -12, 1;
1, 14, -15, -15, 14, 1;
1, -135, 359, -450, 359, -135, 1;
1, 699, -1589, 889, 889, -1589, 699, 1;
1, -5068, 13390, -15092, 13538, -15092, 13390, -5068, 1;
MATHEMATICA
Table[StirlingS1[n, k] +StirlingS1[n, n-k], {n, 0, 10}, {k, 0, n} ]//Flatten (* modified by G. C. Greubel, Apr 07 2019 *)
PROG
(PARI) {T(n, k) = stirling(n, k, 1) + stirling(n, n-k, 1)}; \\ G. C. Greubel, Apr 07 2019
(Magma) [[StirlingFirst(n, k) + StirlingFirst(n, n-k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 07 2019
(Sage) [[(-1)^(n-k)*(stirling_number1(n, k) + (-1)^n*stirling_number1(n, n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 07 2019
CROSSREFS
Cf. A048994.
Sequence in context: A299152 A332770 A113120 * A062557 A276438 A338274
KEYWORD
tabl,sign
AUTHOR
Roger L. Bagula, Jan 16 2009
STATUS
approved