login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154844
Triangle T(n, k) = S(n, k) + S(n, n-k), where S are the Stirling numbers (A048993) of the second kind, read by rows.
1
2, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 14, 7, 1, 1, 11, 40, 40, 11, 1, 1, 16, 96, 180, 96, 16, 1, 1, 22, 203, 651, 651, 203, 22, 1, 1, 29, 393, 2016, 3402, 2016, 393, 29, 1, 1, 37, 717, 5671, 14721, 14721, 5671, 717, 37, 1, 1, 46, 1261, 15210, 56932, 85050, 56932, 15210, 1261, 46, 1
OFFSET
0,1
COMMENTS
Row sums are: {2, 2, 4, 10, 30, 104, 406, 1754, 8280, 42294, 231950, ...}.
FORMULA
T(n, m) = S(n, m) + S(n, n-m), where S(n,k) = A048993(n,k).
Sum_{k=0..n} T(n,k) = 2*A000110(n). - Philippe Deléham, Feb 17 2013
EXAMPLE
Triangle begins as:
2;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 7, 14, 7, 1;
1, 11, 40, 40, 11, 1;
1, 16, 96, 180, 96, 16, 1;
1, 22, 203, 651, 651, 203, 22, 1;
1, 29, 393, 2016, 3402, 2016, 393, 29, 1;
1, 37, 717, 5671, 14721, 14721, 5671, 717, 37, 1;
1, 46, 1261, 15210, 56932, 85050, 56932, 15210, 1261, 46, 1;
MATHEMATICA
Table[StirlingS2[n, m] + StirlingS2[n, n-m], {n, 0, 10}, {m, 0, n}]//Flatten
PROG
(PARI) {T(n, m) = stirling(n, k, 2) + stirling(n, n-m, 2)}; \\ G. C. Greubel, May 01 2019
(Magma) [[StirlingSecond(n, k) + StirlingSecond(n, n-k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 01 2019
(Sage) [[stirling_number2(n, k) + stirling_number2(n, n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 01 2019
CROSSREFS
Cf. A048993.
Sequence in context: A155798 A055652 A290084 * A351089 A133831 A325613
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 16 2009
STATUS
approved