login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325613
Full q-signature of n. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the q-factorization of n.
4
1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 0, 0, 1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 3, 1, 2, 1, 0, 0, 0, 1, 3, 0, 0, 1, 2, 2, 1, 4, 2, 0, 0, 1, 0, 0, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 3, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 4, 1, 2, 2, 2, 3, 1, 0, 0
OFFSET
1,4
COMMENTS
Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Also the number of terminal subtrees with Matula-Goebel number k of the rooted tree with Matula-Goebel number n.
EXAMPLE
Triangle begins:
{}
1
1 1
2
1 1 1
2 1
2 0 0 1
3
2 2
2 1 1
1 1 1 0 1
3 1
2 1 0 0 0 1
3 0 0 1
2 2 1
4
2 0 0 1 0 0 1
3 2
3 0 0 0 0 0 0 1
3 1 1
MATHEMATICA
difac[n_]:=If[n==1, {}, With[{i=PrimePi[FactorInteger[n][[1, 1]]]}, Sort[Prepend[difac[n*i/Prime[i]], i]]]];
qsig[n_]:=If[n==1, {}, With[{ms=difac[n]}, Table[Count[ms, i], {i, Max@@ms}]]];
Table[qsig[n], {n, 30}]
CROSSREFS
Row lengths are A061395.
Row sums are A196050.
Row-maxima are A109129.
The number whose full prime signature is the n-th row is A324922(n).
Cf. A067255.
Matula-Goebel numbers: A007097, A061775, A109082, A317713.
q-factorization: A324923, A324924, A325613, A325614, A325615, A325660.
Sequence in context: A154844 A351089 A133831 * A305054 A375148 A238097
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, May 12 2019
STATUS
approved