login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238097
Number of monic cubic polynomials with coefficients from {1..n} and maximum coefficient equal to n, for which all three roots are integers.
4
0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 0, 2, 2, 2, 0, 3, 2, 1, 2, 3, 1, 3, 0, 3, 3, 1, 1, 4, 3, 1, 1, 3, 2, 3, 1, 2, 3, 2, 0, 4, 5, 2, 2, 2, 1, 3, 3, 3, 3, 1, 0, 5, 4, 1, 2, 4, 4, 3, 1, 2, 2, 3, 1, 5, 6, 1, 2, 3, 2, 3, 1, 4, 6, 2, 0, 5, 5, 1, 1, 3
OFFSET
1,11
LINKS
Dorin Andrica and Eugen J. Ionascu, On the number of polynomials with coefficients in [n], An. St. Univ. Ovidius Constanta, Vol. 22(1),2014, 13-23.
EXAMPLE
a(11) = 2 with polynomials x^3 + 6*x^2 + 11*x + 6 = (x+1) * (x+2) * (x+3) and x^3 + 7*x^2 + 11*x + 5 = (x+1)^2 * (x+5). - Michael Somos, Feb 23 2014
MATHEMATICA
Table[p = Flatten[Table[{a, b, c, 1}, {a, n}, {b, n}, {c, n}], 2]; cnt = 0; Do[If[Max[p[[i]]] == n, poly = p[[i]].x^Range[0, 3]; r = Rest[FactorList[poly]]; If[Total[Transpose[r][[2]]] == 3 && Union[Coefficient[Transpose[r][[1]], x]] == {1}, Print[{n, r}]; cnt++]], {i, Length[p]}]; cnt, {n, 20}] (* T. D. Noe, Feb 22 2014 *)
PROG
(PARI) {a(n) = if( n<1, 0, sum(a1=1, n, sum(a2=1, n, sum(a3=1, n, vecmax([a1, a2, a3]) == n && vecsum( factor( Pol([1, a1, a2, a3]))[, 2]) == 3))))}; /* Michael Somos, Feb 23 2014 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 22 2014
EXTENSIONS
Definition corrected by Giovanni Resta, Feb 22 2014
Extended by T. D. Noe, Feb 22 2014
STATUS
approved