login
A329443
a(n) is the GCD of the binary representation of n interpreted in any numeric base.
3
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2
OFFSET
0,7
LINKS
FORMULA
k divides a(A329000(k)) for any k > 0.
EXAMPLE
For n = 42:
- the binary representation of 42 is "101010",
- the corresponding interpretations in the first bases b, alongside their GCD, are:
b b+b^3+b^5 GCD
-- --------- ---
2 42 42
3 273 21
4 1092 21
5 3255 21
6 7998 3
- as b + b^3 + b^5 is always divisible by 3, we have a(42) = 3.
PROG
(PARI) a(n) = my (g=n, d=binary(n)); for (b=3, oo, g = gcd(g, fromdigits(d, b)); if (g < b, return (g)))
CROSSREFS
Sequence in context: A238097 A066955 A089048 * A348416 A263025 A184348
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Nov 13 2019
STATUS
approved