login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184348
Table read by antidiagonals: T(n,k) is the number of strings of numbers x(i=1..n) in 0..k with sum i^4*x(i) equal to n^4*k
16
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 4, 2, 5, 1, 2, 1, 1, 1, 2, 2, 7, 7, 9, 2, 4, 2, 1, 1, 1, 3, 3, 8, 16, 17, 26, 20, 2, 2, 1, 1, 1, 3, 4, 12, 47, 45, 200, 79, 45, 25, 1, 1, 1, 1, 3, 6, 18, 90, 124
OFFSET
1,20
COMMENTS
Table starts
.1.1.1..1...1....1.....1.....1.....1......1......1......1.......1.......1
.1.1.1..1...1....1.....1.....1.....1......1......1......1.......1.......1
.1.1.1..1...2....2.....2.....2.....2......3......3......3.......3.......3
.1.1.1..1...1....1.....1.....2.....3......4......6......9......11......14
.1.2.2..3...3....4.....7.....8....12.....18.....29.....40......60......80
.1.1.1..1...2....7....16....47....90....137....203....295.....412.....584
.1.1.2..5...9...17....45...124...307....654...1211...2023....3151....4750
.1.1.1..2..26..200...628..1371..2578...4737...8602..15219...25591...41530
.1.2.4.20..79..353..1612..5439.14366..31892..63524.118564..212692..367954
.1.2.2.45.860.4751.14387.34449.81289.193997.434662.897102.1742199.3234015
LINKS
FORMULA
T(n,k) is the coefficient of x^(k*n^4) in Product_{i=1..n} Sum_{j=0..k} x^(j*i^4). - Robert Israel, Nov 03 2016
EXAMPLE
All solutions for n=6 k=5
..0....0
..0....1
..0....0
..0....5
..0....0
..5....4
MAPLE
T:= (n, k) -> coeff(mul(add(x^(i^4*j), j=0..k), i=1..n), x, n^4*k):
seq(seq(f(n, s-n), n=1..s-1), s=2..15); # Robert Israel, Nov 03 2016
CROSSREFS
Cf. A184339 (diagonal), A184340 - A184347 (columns 1 to 8), A184349 - A184354 (rows 3 to 8).
Sequence in context: A329443 A348416 A263025 * A307614 A363057 A242481
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 11 2011
STATUS
approved