login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363057
Run lengths of the Fibonacci word (A003849).
1
1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2
OFFSET
1,3
COMMENTS
The sequence is generated by applying the coding 0->1 1->1 2->2 3->2 4->1 5->1 6->1 7->2 8->1 9->1 to the fixed point of the sequence generated by iterating the morphism 0->01 1->2 2->45 3->91 4->67 5->4 6->28 7->9 8->6 9->31. Alternatively, there is a 10-state automaton to compute the n-th term (where the input is the Zeckendorf representation of n).
LINKS
FORMULA
a(2*n) = 1. - A.H.M. Smeets, Mar 31 2024
EXAMPLE
The first 6 terms of A003849 are 0,1,0,0,1,0 so the first 4 terms of the run-length encoding are 1,1,2,1.
MATHEMATICA
Map[Length, Most[Split[Nest[Flatten[ReplaceAll[#, {0 -> {0, 1}, 1 -> 0}]] &, 0, 10]]]] (* Paolo Xausa, Apr 30 2024 *)
CROSSREFS
Sequence in context: A263025 A184348 A307614 * A242481 A228287 A213636
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, May 15 2023
STATUS
approved