Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Apr 30 2024 08:28:56
%S 1,1,2,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,
%T 2,1,1,1,2,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,2,1,2,1,
%U 1,1,2,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2
%N Run lengths of the Fibonacci word (A003849).
%C The sequence is generated by applying the coding 0->1 1->1 2->2 3->2 4->1 5->1 6->1 7->2 8->1 9->1 to the fixed point of the sequence generated by iterating the morphism 0->01 1->2 2->45 3->91 4->67 5->4 6->28 7->9 8->6 9->31. Alternatively, there is a 10-state automaton to compute the n-th term (where the input is the Zeckendorf representation of n).
%H A.H.M. Smeets, <a href="/A363057/b363057.txt">Table of n, a(n) for n = 1..20000</a>
%F a(2*n) = 1. - _A.H.M. Smeets_, Mar 31 2024
%e The first 6 terms of A003849 are 0,1,0,0,1,0 so the first 4 terms of the run-length encoding are 1,1,2,1.
%t Map[Length, Most[Split[Nest[Flatten[ReplaceAll[#, {0 -> {0, 1}, 1 -> 0}]] &, 0, 10]]]] (* _Paolo Xausa_, Apr 30 2024 *)
%Y Cf. A003849, A096270.
%K nonn
%O 1,3
%A _Jeffrey Shallit_, May 15 2023