The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A363060 Numbers k such that 5 is the first digit of 2^k. 5
 9, 19, 29, 39, 49, 59, 69, 102, 112, 122, 132, 142, 152, 162, 172, 195, 205, 215, 225, 235, 245, 255, 265, 298, 308, 318, 328, 338, 348, 358, 391, 401, 411, 421, 431, 441, 451, 461, 494, 504, 514, 524, 534, 544, 554, 587, 597, 607, 617, 627, 637, 647, 657, 680, 690 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The asymptotic density of this sequence is log_10(6/5) = 0.0791812... . - Amiram Eldar, May 16 2023 In base B we may consider numbers k such that some integer Y >= 1 forms the first digit(s) of X^k. For such numbers k the following inequality holds: log_B(Y) - floor(log_B(Y)) <= k*log_B(X) - floor(k*log_B(X)) < log_B(Y+1) - floor(log_B(Y+1)). The irrationality of log_B(X) is the necessary condition; see the Links section. Examples in the OEIS: B = 10, X = 2; Y = 1 (A067497), Y = 2 (A067469), Y = 3 (A172404). LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 P. Bohl, Über ein in der Theorie der säkularen Störungen vorkommendes Problem, J. Reine Angew. Math. 135 (1909), 189-283. Luboš Pick, On One Application of Irrationality in Search of the Seventh Heaven, Pokroky matematiky, fyziky a astronomie, vol. 67 (2022), 37-44. Hermann Weyl, Über die gibbs’sche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Matem. Palermo 30 (1910), 377-407. Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins., Mathematische Annalen 77 (1916), 313-352. EXAMPLE k = 9: the first digit of 2^9 = 512 is 5, thus k = 9 is a term. MAPLE R:= NULL: count:= 0: t:= 1: for k from 1 while count < 100 do t:= 2*t; if floor(t/10^ilog10(t)) = 5 then R:= R, k; count:= count+1 fi od: R; # Robert Israel, May 19 2023 MATHEMATICA Select[Range[700], IntegerDigits[2^#][[1]] == 5 &] (* Amiram Eldar, May 16 2023 *) PROG (PARI) isok(k) = digits(2^k)[1] == 5; \\ Michel Marcus, May 16 2023 (Python) from itertools import count, islice def A363060_gen(startvalue=1): # generator of terms >= startvalue m = 1<<(k:=max(startvalue, 1)) for i in count(k): if str(m)[0]=='5': yield i m <<= 1 A363060_list = list(islice(A363060_gen(), 20)) # Chai Wah Wu, May 21 2023 CROSSREFS Cf. A000079, A008952, A018856. Cf. A067497, A067469, A172404, A367294, A367295, A330243, A367296, A097415. Sequence in context: A277596 A031499 A017377 * A330171 A189798 A056126 Adjacent sequences: A363057 A363058 A363059 * A363061 A363062 A363063 KEYWORD nonn,base,easy AUTHOR Ctibor O. Zizka, May 16 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 20:31 EST 2024. Contains 370288 sequences. (Running on oeis4.)