login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238099
The stonemason's problem: numbers n such that n^2 is the sum of more than three consecutive cubes, the cube 1 being disallowed.
2
312, 315, 323, 504, 588, 720, 2079, 2170, 2940, 4472, 4914, 5187, 5880, 5984, 6630, 7497, 8721, 8778, 9360, 10296, 10695, 11024, 13104, 14160, 16296, 16380, 18333, 18810, 22022, 22330, 23247, 31248, 36729, 42021, 43065, 43309, 49665
OFFSET
1,1
COMMENTS
A subsequence of both A126200 and A163393.
LINKS
Vincenzo Librandi, Chai Wah Wu, and Charles R Greathouse IV, Table of n, a(n) for n = 1..1000 (1..57 from Librandi, 58..246 from Wu)
H. E. Dudeney, Amusements in Mathematics, Nelson, London, 1917, Problem 135.
EXAMPLE
312^2 = 97344 = 14^3 + 15^3 + ... + 25^3.
MATHEMATICA
nn = 500; t = Table[n^3, {n, 2, nn}]; t2 = Table[Total[Take[t, {i, j}]], {i, nn - 1}, {j, i + 3, nn - 1}]; t3 = Select[Union[Flatten[t2]], # <= nn^3 &]; Select[t3, IntegerQ[#^(1/2)] &]^(1/2) (* T. D. Noe, Feb 25 2014 *)
nn=1000; With[{c=Range[2, nn]^3}, Sort[Select[Sqrt[#]&/@ Flatten[ Table[ Total/@ Partition[c, n, 1], {n, 4, nn}]], IntegerQ]]] (* Harvey P. Dale, Apr 28 2014 *)
PROG
(PARI) list(lim)=my(v=List(), L2=(lim\=1)^2, s, t); for(n=25, sqrtnint(lim^2\3, 3)+1, s=3*n^3 - 9*n^2 + 15*n - 9; forstep(k=n-3, 2, -1, s+=k^3; if(s>L2, break); if(issquare(s, &t), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Nov 13 2016
CROSSREFS
Sequence in context: A139638 A308002 A112542 * A259720 A011774 A011251
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 25 2014
STATUS
approved