login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The stonemason's problem: numbers n such that n^2 is the sum of more than three consecutive cubes, the cube 1 being disallowed.
2

%I #26 Nov 14 2016 02:43:12

%S 312,315,323,504,588,720,2079,2170,2940,4472,4914,5187,5880,5984,6630,

%T 7497,8721,8778,9360,10296,10695,11024,13104,14160,16296,16380,18333,

%U 18810,22022,22330,23247,31248,36729,42021,43065,43309,49665

%N The stonemason's problem: numbers n such that n^2 is the sum of more than three consecutive cubes, the cube 1 being disallowed.

%C A subsequence of both A126200 and A163393.

%H Vincenzo Librandi, Chai Wah Wu, and Charles R Greathouse IV, <a href="/A238099/b238099.txt">Table of n, a(n) for n = 1..1000</a> (1..57 from Librandi, 58..246 from Wu)

%H H. E. Dudeney, <a href="https://archive.org/stream/amusementsinmath00dude">Amusements in Mathematics</a>, Nelson, London, 1917, Problem <a href="https://archive.org/stream/amusementsinmath00dude#page/24/mode/2up/">135</a>.

%e 312^2 = 97344 = 14^3 + 15^3 + ... + 25^3.

%t nn = 500; t = Table[n^3, {n, 2, nn}]; t2 = Table[Total[Take[t, {i, j}]], {i, nn - 1}, {j, i + 3, nn - 1}]; t3 = Select[Union[Flatten[t2]], # <= nn^3 &]; Select[t3, IntegerQ[#^(1/2)] &]^(1/2) (* _T. D. Noe_, Feb 25 2014 *)

%t nn=1000;With[{c=Range[2,nn]^3},Sort[Select[Sqrt[#]&/@ Flatten[ Table[ Total/@ Partition[c,n,1],{n,4,nn}]],IntegerQ]]] (* _Harvey P. Dale_, Apr 28 2014 *)

%o (PARI) list(lim)=my(v=List(),L2=(lim\=1)^2,s,t); for(n=25,sqrtnint(lim^2\3,3)+1, s=3*n^3 - 9*n^2 + 15*n - 9; forstep(k=n-3,2,-1, s+=k^3; if(s>L2, break); if(issquare(s,&t), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Nov 13 2016

%Y Cf. A126200, A163393.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Feb 25 2014