login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011774
Nonprimes k that divide sigma(k) + phi(k).
7
1, 312, 560, 588, 1400, 23760, 59400, 85632, 147492, 153720, 556160, 569328, 1590816, 2013216, 3343776, 4563000, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 45326160, 52021242, 75007400, 113315400, 137617728, 153587720, 402831360, 699117024
OFFSET
1,2
COMMENTS
2*k = sigma(k) + phi(k) if and only if k is 1 or a prime.
If 7*2^j - 1 is prime then m = 2^(j+2)*3*(7*2^j - 1) is in the sequence. Because phi(m) = 2^(j+2)*(7*2^j - 2); sigma(m) = 7*2^(j+2)*(2^(j+3) - 1) so phi(m) + sigma(m) = 2^(j+2)*((7*2^j - 2) + (7*2^(j+3) - 7)) = 2^(j+2)* (63*2^(j+2) - 9) = 3*(2^(j+2)*3*(7*2^j - 1)) = 3*m, hence m is a term of A011251 and consequently m is a term of this sequence. A112729 gives such m's. - Farideh Firoozbakht, Dec 01 2005
Conjecture: For n > 1, a(n) is a Zumkeller number (A083207). Verified for all n in [2,63]. - Ivan N. Ianakiev, Jan 25 2023
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
Zhang Ming-Zhi, typescript submitted to Unsolved Problems section of Monthly, 96-01-10.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..63 (terms < 10^13; first 53 terms from Donovan Johnson)
Richard K. Guy, Divisors and desires, Amer. Math. Monthly, 104 (1997), 359-360.
Q.-X. Jin and M. Tang, The 4-Nicol Numbers Having Five Different Prime Divisors, J. Int. Seq. 14 (2011) # 11.7.2.
Eric Weisstein's World of Mathematics, Prime Number.
EXAMPLE
a(26) = 113315400: sigma = 426535200, phi = 26726400, quotient = 4.
MATHEMATICA
Do[If[Mod[DivisorSigma[1, n]+EulerPhi[n], n]==0, Print[n]], {n, 1, 2*10^7}]
Do[ If[ ! PrimeQ[n] && Mod[ DivisorSigma[1, n] + EulerPhi[n], n] == 0, Print[n] ], {n, 1, 10^8} ]
PROG
(PARI) sp(n)=my(f=factor(n)); n*prod(i=1, #f[, 1], 1-1/f[i, 1]) + prod(i=1, #f[, 1], (f[i, 1]^(f[i, 2]+1)-1)/(f[i, 1]-1))
p=2; forprime(q=3, 1e6, for(n=p+1, q-1, if(sp(n)%n==0, print1(n", "))); p=q) \\ Charles R Greathouse IV, Mar 19 2012
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from David W. Wilson
Corrected by Labos Elemer, Feb 12 2004
STATUS
approved