login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238094
Triangle read by rows: T(n,k) (n >= 1, k >= 0) = number of Dyck paths of semilength k avoiding the pattern U^n D^n.
0
0, 1, 1, 1, 1, 1, 2, 4, 4, 1, 1, 2, 5, 13, 25, 25, 1, 1, 2, 5, 14, 41, 106, 196, 196, 1, 1, 2, 5, 14, 42, 131, 392, 980, 1764, 1764, 1, 1, 2, 5, 14, 42, 132, 428, 1380, 4068, 9864, 17424, 17424, 1, 1, 2, 5, 14, 42, 132, 429, 1429, 4797, 15489, 44649, 105633, 184041, 184041, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16714, 56749, 181258, 511225
OFFSET
1,7
COMMENTS
Row n has length 2n-1.
LINKS
Axel Bacher, Antonio Bernini, Luca Ferrari, Benjamin Gunby, Renzo Pinzani, Julian West, The Dyck pattern poset, Discrete Math. 321 (2014), 12--23. MR3154009.
EXAMPLE
Triangle begins:
0,
1, 1, 1,
1, 1, 2, 4, 4,
1, 1, 2, 5, 13, 25, 25,
1, 1, 2, 5, 14, 41, 106, 196, 196,
1, 1, 2, 5, 14, 42, 131, 392, 980, 1764, 1764,
1, 1, 2, 5, 14, 42, 132, 428, 1380, 4068, 9864, 17424, 17424,
1, 1, 2, 5, 14, 42, 132, 429, 1429, 4797, 15489, 44649, 105633, 184041, 184041,
...
CROSSREFS
Rows converge to A000108. Right-hand edge is A001246.
Sequence in context: A358641 A057277 A258712 * A140734 A295633 A159778
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Feb 21 2014
STATUS
approved