OFFSET
1,3
COMMENTS
Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Then a(n) is the number of factors of multiplicity one in the q-factorization of n.
Also the number of rooted trees appearing only once in the multiset of terminal subtrees of the rooted tree with Matula-Goebel number n.
MATHEMATICA
difac[n_]:=If[n==1, {}, With[{i=PrimePi[FactorInteger[n][[1, 1]]]}, Sort[Prepend[difac[n*i/Prime[i]], i]]]];
Table[Count[Length/@Split[difac[n]], 1], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 13 2019
STATUS
approved