login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325657
a(n) = (1/2)*(-1 + (-1)^n)*(n-1) + n^2.
1
0, 1, 4, 7, 16, 21, 36, 43, 64, 73, 100, 111, 144, 157, 196, 211, 256, 273, 324, 343, 400, 421, 484, 507, 576, 601, 676, 703, 784, 813, 900, 931, 1024, 1057, 1156, 1191, 1296, 1333, 1444, 1483, 1600, 1641, 1764, 1807, 1936, 1981, 2116, 2163, 2304, 2353, 2500, 2551
OFFSET
0,3
COMMENTS
For n > 0, a(n) is the n-th element of the diagonal of the triangle A325655. Equivalently, a(n) is the element M_{n,1} of the matrix M(n) whose permanent is A322277(n).
FORMULA
O.g.f.: (-1 - 3*x - x^2 - 3*x^3)/((-1 + x)^3*(1+x)^2).
E.g.f.: (1/2)*exp(-x)*(-1 - x + exp(2*x)*(1 + x + 2*x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4
a(n) = n^2 if n is even.
a(n) = n^2 - n + 1 if n is odd.
MAPLE
a:=n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): seq(a(n), n=0..55);
MATHEMATICA
Table[(1/2)*(- 1+(-1)^n)*(n-1)+n^2, {n, 0, 55}]
PROG
(GAP) Flat(List([0..55], n->(1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2));
(Magma) [(1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2: n in [0..55]];
(PARI) a(n) = (1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, May 13 2019
STATUS
approved