login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229917 Numbers of espalier polycubes of a given volume in dimension 4. 1
1, 4, 7, 16, 22, 46, 58, 107, 140, 227, 287, 464, 563, 851, 1067, 1530, 1866, 2661, 3198, 4428, 5361, 7185, 8613, 11524, 13639, 17839, 21272, 27359, 32300, 41369, 48512, 61311, 72105, 89904, 105226, 130834, 152164, 187297, 218356, 266444, 309125, 375995, 434670, 525045, 607329, 728256, 839874, 1004938 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A (d+1)-pyramid polycube is a (d+1)-polycube obtained by gluing together horizontal (d+1)-plateaux (parallelepipeds of height 1) in such a way that the cell (0,0,...,0) belongs to the first plateau and each cell with coordinates (0,n_1,...,n_d) belonging to the first plateau is such that n_1 , ... , n_d >= 0.

If the cell with coordinates (n_0,n_1,...,n_d) belongs to the (n_0+1)-st plateau (n_0>0), then the cell with coordinates (n_0-1, n_1, ... ,n_d) belongs to the n_0-th plateau.

A (d+1)-espalier is a (d+1)-pyramid such that each plateau contains the cell (n_0,0,...,0).

LINKS

Table of n, a(n) for n=1..48.

CROSSREFS

Cf. A229915, A227925.

Sequence in context: A067398 A054599 A285998 * A095755 A245937 A259653

Adjacent sequences:  A229914 A229915 A229916 * A229918 A229919 A229920

KEYWORD

nonn

AUTHOR

Matthieu Deneufchâtel, Oct 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 02:57 EST 2018. Contains 317371 sequences. (Running on oeis4.)