login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A342657
The difference between floor(log_2(.)) of and the number of prime factors in A156552(n) (when counted with multiplicity).
3
0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 1, 1, 0, 2, 0, 3, 1, 3, 0, 3, 0, 4, 1, 3, 0, 2, 0, 3, 3, 5, 1, 1, 0, 7, 3, 3, 0, 4, 0, 5, 2, 5, 0, 4, 0, 2, 4, 6, 0, 3, 1, 5, 5, 7, 0, 4, 0, 9, 3, 2, 3, 4, 0, 6, 7, 4, 0, 3, 0, 10, 2, 7, 1, 5, 0, 5, 1, 11, 0, 3, 3, 11, 5, 3, 0, 2, 1, 8, 7, 11, 4, 4, 0, 3, 3, 3, 0, 5, 0, 7, 2
OFFSET
2,11
FORMULA
a(n) = (A252464(n)-A342655(n))-1 = (A325134(n)-A342655(n)) - 2.
a(p) = a(p^2) = 0 for all primes p. (Second part added Jul 27 2023)
a(A003961(n)) = a(2*A246277(n)) = a(n).
PROG
(PARI)
A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
A342657(n) = { my(u=A156552(n)); (#binary(u)-bigomega(u))-1; };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 18 2021
STATUS
approved