login
A342656
a(n) = A087436(A156552(n)); Number of odd prime factors in A156552(n), counted with repetitions.
6
0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 2, 2, 0, 1, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 1, 3, 0, 1, 2, 2, 0, 1, 0, 1, 1, 4, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 2, 3, 0, 1, 0, 2, 1, 3, 1, 2, 0, 2, 1, 1, 0, 2, 0, 2, 1, 2, 1, 2, 0, 1, 2, 2, 0, 3, 2, 3, 4, 4, 0, 3, 2, 2, 3, 4, 2, 2, 0, 2, 2, 2, 0, 3, 0, 1, 2
OFFSET
2,9
FORMULA
a(n) = A087436(A156552(n)) = A001222(A322993(n)).
a(n) = A342655(2*A246277(n)) = 1 + A342655(n) - A055396(n).
a(p) = 0 for all primes p.
a(A003961(n)) = a(n).
PROG
(PARI)
A087436(n) = (bigomega(n>>valuation(n, 2)));
A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
(PARI)
\\ Version using the factorization file available at https://oeis.org/A156552/a156552.txt
v156552sigs = readvec("a156552.txt");
A342656(n) = if(2==n, 0, my(prsig=v156552sigs[n], ps=prsig[1], es=prsig[2]); vecsum(es)-((2==ps[1])*es[1])); \\ Antti Karttunen, Jan 29 2022
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 18 2021
STATUS
approved