Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 May 13 2019 01:10:15
%S 1,1,1,2,1,1,1,2,1,2,0,0,1,3,2,2,2,1,1,1,1,1,0,1,3,1,2,1,0,0,0,1,3,0,
%T 0,1,2,2,1,4,2,0,0,1,0,0,1,3,2,3,0,0,0,0,0,0,1,3,1,1,3,1,0,1,2,1,1,0,
%U 1,2,2,0,0,0,0,0,0,1,4,1,2,2,2,3,1,0,0
%N Full q-signature of n. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the q-factorization of n.
%C Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
%C 11 = q(1) q(2) q(3) q(5)
%C 50 = q(1)^3 q(2)^2 q(3)^2
%C 360 = q(1)^6 q(2)^3 q(3)
%C Also the number of terminal subtrees with Matula-Goebel number k of the rooted tree with Matula-Goebel number n.
%e Triangle begins:
%e {}
%e 1
%e 1 1
%e 2
%e 1 1 1
%e 2 1
%e 2 0 0 1
%e 3
%e 2 2
%e 2 1 1
%e 1 1 1 0 1
%e 3 1
%e 2 1 0 0 0 1
%e 3 0 0 1
%e 2 2 1
%e 4
%e 2 0 0 1 0 0 1
%e 3 2
%e 3 0 0 0 0 0 0 1
%e 3 1 1
%t difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
%t qsig[n_]:=If[n==1,{},With[{ms=difac[n]},Table[Count[ms,i],{i,Max@@ms}]]];
%t Table[qsig[n],{n,30}]
%Y Row lengths are A061395.
%Y Row sums are A196050.
%Y Row-maxima are A109129.
%Y The number whose full prime signature is the n-th row is A324922(n).
%Y Cf. A067255.
%Y Matula-Goebel numbers: A007097, A061775, A109082, A317713.
%Y q-factorization: A324923, A324924, A325613, A325614, A325615, A325660.
%K nonn,tabf
%O 1,4
%A _Gus Wiseman_, May 12 2019